Dimension Reduction, Stochastic Parametrization and Data Assimilation for Transport in the Ocean

Clint Dawson
Juan Restrepo
Steven Rosenthal
Shankar Venkataramani
Oil in the environment

- Evaporation
- Photo-oxidation
- Spreading
- Dispersion
- Dissolution
- Sedimentation
- Emulsification
- Biodegradation
Tracking
Feature based (Lagrangian) data assimilation

(a) (b)

(c) (d)

Classic

Contour Analysis
Canonical transformations for displacement assimilation

Area preserving flows correspond to symplectic maps.

Find M such that

$$\min ||q(M(x)) - q_0||_2^2.$$

here $(x, y)^M \rightarrow (X, Y)$.

In 2-Dimensions, the generating function is $G(X, y) = Xy + f(X, y)$.

$$x = \frac{\partial G}{\partial y} = X + f_y(X, y)$$

$$Y = \frac{\partial G}{\partial X} = y + f_x(X, y).$$

invertible if $f_{yx} > -1$.

Regularize!
Displacement map
Displacement assimilation: Ensemble Kalman filter
Transport
Nearshore sticky waters

A red tide event, off the coast of Florida. The event occurs nearly annually along the state’s Gulf Coast.

Image courtesy of P. Schmidt, Charlotte Sun.
Model I

- A thin oil slick sits atop the ocean.
- The ocean’s mixed layer of thickness P is laden with oil droplets.
- x is the distance from the shore.
- The break zone extends to $x = L$.
- The ocean surface is at $z = 0$ and bottom topography is fixed and described by $z = -H(x)$.
Model II

- Bottom topography:

\[H(x) = H_0 + mx, \quad 0 \leq x \leq X, \]

- Mixed layer thickness \(\xi(x) \approx \min(H(x), P) \).

- Bulk oil concentration \(B(x, t) \). Equivalent thickness of oil layer \(b(x, t) = B(x, t)\xi(x) \).

Parabolic profile for mean flow:

\[U = U^{St} \left(1 + \frac{4z}{H(x)} + \frac{3z^2}{H(x)^2} \right) \]

Bulk flux:

\[\Gamma_B = b(x, t)U^{St} \left[1 - \frac{\xi(x)}{H(x)} \right]^2 . \]
Model III

Diffusivity:

\[
D(x) = D_{eddy} + S(x)D_L.
\]

\[
S(x) = \frac{1}{1+\exp[(x-L)/w]}
\]

Surface/bulk mixing

\[
\text{Flux: } \Gamma_{SB} = \frac{1}{\tau(x)} [(1 - \gamma)s - \gamma PB]
\]

\[
\tau(x) \sim \frac{P^2}{D(x)}
\]

Vertical equilibrium:

\[
\frac{s}{PB} = \frac{\gamma}{1 - \gamma}.
\]
Model IV

\[
\frac{\partial s}{\partial t} + \frac{\partial [u_s(x)s]}{\partial x} = -\frac{(1 - \gamma)s - \gamma PB}{\tau(x)} + \frac{\partial}{\partial x} \left[D(x) \frac{\partial s}{\partial x} \right],
\]

\[
\frac{\partial b}{\partial t} + \frac{\partial [u_B(x)b]}{\partial x} = \frac{(1 - \gamma)s - \gamma PB}{\tau(x)}
\]

\[
+ \frac{\partial}{\partial x} \left[\xi(x)D(x) \frac{\partial}{\partial x} B \right],
\]

\[
\Rightarrow \quad \frac{\partial b}{\partial t} + \frac{\partial [v(x)b]}{\partial x} = \frac{(1 - \gamma)s - \gamma PB}{\tau(x)} + \frac{\partial}{\partial x} \left[D(x) \frac{\partial b}{\partial x} \right],
\]
Finite dimensional reduction

\[q = b + s \quad \implies \quad s \approx \frac{\gamma P}{\gamma P + (1 - \gamma)\xi} q, \quad b \approx \frac{(1 - \gamma)\xi}{\gamma P + (1 - \gamma)\xi} q. \]

\[
\frac{\partial q}{\partial t} = \frac{\partial}{\partial x} \left[D(x) \frac{\partial q}{\partial x} - u_e(x)q \right],
\]

\[
u_e(x) = \frac{\gamma P u_S + (1 - \gamma)\xi v(x)}{\gamma P + (1 - \gamma)\xi}.
\]

- Independent of \(\tau(x) \).
Asymptotic solutions

- $q \approx \frac{1}{\sqrt{2\pi \sigma^2(t)}} \exp \left[-\frac{(x - \mu(t))^2}{2\sigma^2(t)} \right]$ describes an evolving unit mass Gaussian pulse

$$\frac{\partial}{\partial t} \mu = u_e(\mu) + \frac{\partial D}{\partial x}(\mu), \quad \frac{\partial}{\partial t} \sigma^2 = 2D(\mu),$$

This model works best at early times, when $\sigma(t)/\mu(t) \ll 1$, so the pulse does not “feel” the boundary condition at the shore $x = 0$.

- Steady state

$$q \rightarrow q_\infty = C \exp \left[\int \frac{u_e(x)}{D(x)} \, dx \right], C \text{ is a normalizing constant.}$$
Qualitative behavior of solutions

- Maxima of the steady state solution are at points where $u_e = 0$.
- In what circumstances is the maximum of the steady state distributions “significantly” away from the shore, i.e. the location of the maximum is on the scale of L, the width of the break zone?

Dimensionless parameters

\[
\beta = \left(\frac{P - H_0}{H_\infty - H_0} \right) \frac{X}{L}.
\]

\[
\delta = \frac{D_L}{D_{threshold}} = \frac{(1 - \gamma)D_L(H_\infty - H_0)}{\gamma P|\mathcal{U}^{St}|X}.
\]
Patched solutions

When $\mu(t) = a\sigma(t)$, where a is a $O(1)$ constant, switch from the description in terms of a moving Gaussian pulse to the description

$$q(x, t) \approx q_\infty(x) + f(x)e^{-\lambda_1 t},$$

where

$$\frac{\partial}{\partial x} \left[D(x) \frac{\partial f}{\partial x} - u_e(x)f \right] = -\lambda_1 f$$

t_e is the switching time:

$$q(x, t) \approx q_\infty + \left[\sqrt{\frac{2}{\pi \sigma^2(t_e)}} \frac{1}{1 + \text{Erf} (\sqrt{a/2})} \exp \left[-\frac{(x - \mu(t_e))^2}{2 \sigma^2(t_e)} \right] - q_\infty \right] e^{-\lambda_1 (t - t_e)},$$
Comparison of full and patched solutions

\[P = 1, \gamma = 0.9 \]
Increase β

Increase δ
Aging
Oil as a composite

- **Oil in the environment is a composite** with tens to hundreds of distinct individual species.

- Biological, Chemical and Physical processes act with different rates on the components.

- Modeling is complicated: **Composition dependence** implies **History dependence** in the dynamics of the composite.

- **Goal:** Develop stochastic, autonomous and low dimensional models for environmental processes acting on oil, and couple with models of large scale flows in the ocean.
Setup

“Evaporation” – a linear decay process with rates that can vary (widely!) among the different components.

For species i: $\frac{\partial c_i(t)}{\partial t} = -\alpha_i c_i(t)$.

The species are indexed by $1 \leq i \leq N$ with $N \gg 1$.

Choose the indexing so that $\alpha_{i+1} > \alpha_i$.

Observable: $M(t) = \sum_i \beta_i c_i(t)$.

Change of variables + “Continuum limit” $N \to \infty$:

$\frac{\partial \rho(w,t)}{\partial t} = -w \rho(w,t), \quad M(t) = \int_0^1 \rho(w) \, dw$.
Mori-Zwanzig formalism

Full dynamics: $\partial_t \rho = L \rho$.
P is projection onto the observables, $Q = I - P$.
Decompose state into observables and noise: $\xi = P \rho, \eta = \rho - \xi = Q \rho$.

$$\dot{\eta} = QL \xi + QL \eta$$

$$\eta(t) = \int_0^t e^{(t-s)QL}QL\xi(s)ds + e^{tQL}\eta(0)$$

$$\dot{\xi} = PL \xi + PL \eta$$

$$\xi = \underbrace{PL \xi}_{\text{Markovian}} + \underbrace{\int_0^t PLe^{(t-s)QL}QL\xi(s)ds}_{\text{memory}} + \underbrace{PLe^{tQL}\eta(0)}_{\text{noise}}$$

This is an example of a Generalized Langevin equation.
Analytic results

\[M = \int \rho dw, \quad P = 1 \otimes \int \text{ yields} \]

\[\dot{M}(t) = -\frac{1}{2}M(t) + \int_0^t h(t-s)M(s)ds + \beta(t). \]

History kernel: \(h(t) = \mathcal{L}^{-1} \left[(\log(1+s^{-1}))^{-1} \right] \) is given by an inverse Laplace transform.

\(\beta \) is "noise" resulting from the uncertainties in the (unobservable) density distribution \(\rho(w,t) \).

The \(s \to 0 \) behavior of the Laplace transform is **non-analytic** \(\implies \) **fat-tail** for the memory kernel.

\[h(t) \sim \frac{1}{t(\log(t))^2}. \]
Mean and fluctuations
Filtering, Prediction and Data assimilation

"Invariant measure" is $\rho = 0$! We thus don’t have a Fluctuation-dissipation theorem. How to characterize the noise process, which is now non-stationary?

State space model: $M_n = \sum_{j=1}^{n} h_j M_{n-j} + \beta_n$.

Noisy measurements: $\hat{M}_n = M_n + \sigma \gamma_n$ where γ_n are uncorrelated normal variates.

If we assume $\text{var}(\beta_n) \gg \sigma^2$, we have the prediction/filtering algorithm $\tilde{M}_n \approx \sum_{j=1}^{n} h_j \hat{M}_{n-j}$.

Question: How to truncate the sum?
Filter error

![Graph showing filter error over time with different filtering methods: No filtering, Truncated FIR, and Empirical filter. The x-axis represents time, and the y-axis represents inferred error on a logarithmic scale. The graph illustrates the performance of each method over time, with the Empirical filter showing the lowest error.]
Conclusions

- Many interesting PDE problems arise from study of oil in the environment.

- Combining observational data with models.

- New methods for analysis: Rigorous derivation of low dimensional models.